Sunday, August 1, 2010

SN2 Mechanism

The SN2 reaction (also known as bimolecular nucleophilic substitution or as backside attack) is a type of nucleophilic substitution, where a lone pair from a nucleophile attacks an electron deficient electrophilic center and bonds to it, expelling another group called a leaving group. Thus the incoming group replaces the leaving group in one step. Since two reacting species are involved in the slow, rate-determining step of the reaction, this leads to the name bimolecular nucleophilic substitution, or SN2.





Fig:
In an example of the SN2 reaction, the attack of OH− (the nucleophile) on a bromoethane (the electrophile) results in ethanol, with bromide ejected as the leaving group.
SN2 attack occurs if the backside route of attack is not sterically hindered by substituents on the substrate. Therefore this mechanism usually occurs at an unhindered primary carbon centre. If there is steric crowding on the substrate near the leaving group, such as at a tertiary carbon centre, the substitution will involve an SN1 rather than an SN2 mechanism, (an SN1 would also be more likely in this case because a sufficiently stable carbocation intermediary could be formed.)

1 comment:

  1. Products listed on our website are either in stock or can be resynthesized within a reasonable time frame. 1-octyl-2,3-dimethylimidazolium tosylate

    ReplyDelete

Powered By Blogger